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Abstract 

Lightweight formal methods promise to yield  modest  analysis results in an extremely 
rapid  manner. To fulfill this promise, they  must  be able to work with existing 
information sources, be  able to analyze for manifestly desirable properties, be  highly 
automated (especially  if dealing with voluminous amounts of information), and  be  readily 
customizable and flexible in  the face of emerging needs  and understanding. Two pilot 
studies investigate the feasibility of lightweight formal methods that  employ a database as 
the underlying reasoning engine to perform the analyses. The first study concerns aspects 
of software module interfaces, the second test logs’ adherence to required and expected 
conditions. 
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1. Introduction 

Critical software systems often  warrant  high levels of assurance as to the correctness of 
their design and implementation. Increasingly, formal methods are being applied in 
conjunction with traditional testing as a means to achieve  these  high levels of assurance. 
In such a context, formal  methods are just another analysis technique, and  the choice of 
when and where to apply them should be justified in terms of their cost-effectiveness. 
Criteria that enter into this determination include the ease of application of the methods, 
and the timeliness and  value of their results. 

Jackson and Wing [Jackson & Wing 19961 in  their contribution to a roundtable 
discussion use the term lightweight  formal  methods to refer to formal methods intended 
to be particularly amenable to rapid application, and  thus  have the capacity to yield results 
in a cost-effective and  timely fashion. Traditionally, use  of tool-based formal methods in 

The research described in this paper was carried out  by  the  Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the National Aeronautics and 
Space administration. Funding was provided under  NASA’s Code Q Software Program 
Center Initiative UPN #323-08. 
Reference herein to any specific commercial product,  process,  or service by trade name, 
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by  the 
United States Government or the Jet Propulsion Laboratory, California Institute of 
Technology. 

mailto:Martin.S.Feather@Jpl.Nasa.Gov


i Feather  Rapid  Application of Lightweight  Formal Methods. 2 

the arena of software validation and verification has  applied theorem proving to confirm 
properties of formal specifications. Theorem proving can indeed  be applied to conduct 
deep  and significant analyses,  but  often requires a large investment of effort to prepare for 
its application. In contrast, lightweight formal methods occupy a different place in  the 
spectrum of analysis techniques. They  have more modest  analysis goals, and employ tools 
that require less preparatory  work to apply. 

The  goal  of  rapid application ensures that  the analysis results become available early in 
the development process. This has  the obvious benefit that  the developers become alerted 
to discovered problems early rather than late in  the  development process, so saving them 
the considerable effort of fixing errors downstream [Boehm 19811. Thus, the analysis 
results are both timely and potentially valuable. Furthermore, the need to achieve rapidity 
of analysis has the side effect of constraining the analysis  method to be one which is easy 
and simple to apply (anything otherwise would fail to be sufficiently rapid!). That is, by 
their nature, rapidly applied analysis methods are inherently inexpensive. 

The approach we  have followed employs a database as  the  underlying reasoning engine to 
perform analyses. The rationale for this choice is described in Section 2, along with the 
background to the two pilot studies used to investigate the feasibility of this approach. 
The first pilot study is described in Section 3, along  with the intermediate conclusions 
drawn from that effort. The second  pilot study employed  the  same tool in support of 
analysis, and  was applied to a different aspect of  that same project; it is described in 
Section 4. An overall discussion concludes the  paper in Section 5. 

2. Approach 

Meeting the goal of rapid application necessitates a judicious simultaneous choice of 
analysis objective and analysis  method.  It  must  be relatively easy  and  speedy  to: 
(1) acquire the information to be  analyzed  in  the form required for analysis, 
(2) decide what to analyze this information for, 
(3) actually perform the analysis itself, and 
(4) interpret the results of  the method. 

Together, (1) and (2) imply a need to employ analysis techniques that work with available 
sources of information and to analyze for properties that are  readily seen to be required 
and readily expressed to the  analysis tool. (3) and (4) imply a need to apply  highly 
automated analysis methods that are both rapid  and flexible. 

Our approach is distinguished from previous approaches (both lightweight and 
heavyweight) by the fact that  we frame the analysis problem in terms of database queries, 
and  we use a database as  the underlying analysis engine. The information to be  analyzed 
is loaded as data into the database, and  the properties to be  analyzed for are cast as 
database queries. The database itself evaluates those queries, and the query results 
provide the detailed  analysis results. 

The strengths and weaknesses of a database used  as  an  analysis engine differ somewhat 
from those of reasoning engines typically brought to bear for software analysis. A typical 
database provides a flexible query language, user-definable schema with  which to express 
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relationships among data, support for loading data into the database, and  powerful  report 
generation capabilities. These characteristics support the four criteria identified above. 
The user-definable schema and  support for data entry facilitate working  with available 
sources of information in a large variety of formats. A flexible query  language permits the 
easy expression of a wide range of properties to be  analyzed for. The underlying query 
optimization mechanism relieves the user from the burden of (re)expressing the  property 
(query) just so as to achieve efficiency of analysis. The ability to refine and compose 
queries provides flexibility to evolve the analysis. Result reporting and categorization 
supports ease of expressing results (e.g., listing anomalies and their details). 

Of course, a database is not suited to every kind of analysis. The  most important 
constraining factor is the  need to work  with explicit information (so that  it can be loaded 
as data into the database). In contrast, other analysis techniques are commonly based upon 
mechanisms that  work  with implicit forms of expression. For example, state-exploration 
techniques may  work  with a program-like description, implying a state space; they 
generate and explore this implicit state space themselves. The ability to analyze properties 
of implicit forms of information is  highly desirable - it may  yield results that are difficult 
for humans to reliably ascertain by manual inspection. Theorem proving can  be applied to 
analyze properties of implicit descriptions of information that, if made explicit, would  be 
infinite in size. Yet working with implicit information often necessitates a good match of 
both notation and scale between  the  form  of the information to be  analyzed,  and the form 
and scale of input that the  analysis  tool can accept  and  tractably  reason with. Mismatches 
in either form or scale can  be bridged, but  typically  only  with a considerable investment 
of time and effort. 

Another distinguishing characteristic of our approach is the emphasis on  working  with 
available information. Our  motivation is twofold: first and foremost, to achieve the 
rapidity  of analysis that  we desire; second, to be able to ascribe the benefits of the 
approach to mechanized analysis  rather  than to the involvement and insight of a skilled 
analyst. This last point is important if  we  seek to transfer the technique into widespread 
use, since analysis technology is readily replicated, whereas skilled analysts are not. 

This paper reports on two closely linked pilot studies that  rapidly  apply lightweight 
formal methods employing a database as reasoning engine. These pilot studies investigate 
feasibility by application to real problems, but do not replace any  of  the inspection and 
testing activities that the spacecraft developers must currently perform. The intent is that 
a pilot study will indicate whether a technique has promise, and  if so, indicate how it 
should be put to practical use  in future projects. 

The area of the studies is the ongoing design and development of spacecraft software. The 
particular spacecraft we  have studied is NASA’s New Millennium project’s Deep Space- 
1, in particular, the Autonomy software intended to control that spacecraft. The spacecraft 
project adopted a fast-paced rapid prototyping style  of development, and 
employedrelatively complex on-board software. Rapidly  applied  analysis methods were 
thus  highly appropriate. Our focus was  on two aspects of this project: analyzing for 
consistency and completeness properties of interfaces between  some of the software 
modules, and analyzing transcripts generated during testing for adherence to some of  the 
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requirements. Analyses such as these are likely to be useful in a wide  range  of software 
systems, not just spacecraft software. 

3. Pilot  Study I - Analyzing  Software  Interfaces 

The software system  that controls the spacecraft is subdivided into several major 
modules, which communicate via  message passing. Separate teams of developers are 
responsible for the design and  development  of each of these modules. A previous study of 
safety-critical, embedded systems [Lutz  19931 identified interfaces as a major source of 
software errors. This suggested  that  the interfaces between this spacecraft’s modules 
would  be  an area ripe for analysis. Furthermore, lightweight analysis  was anticipated to 
be applicable to reveal discrepancies between different modules  at the interface level. 

The four requirements for rapid  analysis led to the following decisions: 

To rapidly  acquire  the  information to  be analyzed: In the early stages of development, 
the interface of each module was documented diagrammatically to facilitate 
coordination and understanding between the development teams. Thus the analysis 
process was targeted to work with this same information source. 

To rapidly  decide  what to analyze  this  information for: Manifestly desirable 
properties of consistency and completeness were easy to postulate. Additional 
information present in  the diagrams, in the form of simple causality information, also 
served  as a source of further obvious analysis opportunities. 

To rapidly peflorm the  analysis  itself: A database with a powerful  and flexible query 
mechanism  was chosen to serve as  the analysis tool. The expectation was that it 
would  be straightforward to design a database schema customized for holding the 
information content implied by  the diagrams, load the  diagrams’ information into that 
database, and express the  analyses  as database queries. Thereafter, the query 
mechanism  of the database itself  would perform the analyses  rapidly  and 
automatically. 

To rapidly  interpret  the  results of the  method: Discrepancies that this analysis 
revealed  would  be  readily traceable to the interface diagrams, and so would  be easy to 
interpret. The exercise showed that some iterative refinement of the queries was 
needed to separate those discrepancies attributable to obviously missing information 
from those ‘discrepancies that  were  more indicative of  unintended omissions, etc. 
Again,  the flexibility and simplicity of a database analysis engine proved the key to 
the  rapidity of these iterative refinements. 

Available  Information 

In the early stages of development, the interface of each module  was documented 
diagrammatically to facilitate coordination and understanding between  the development 
teams. 

Figure 1 shows an example of one of these diagrams. The software module is drawn  as a 
rectangular box; arrows entering into and emanating out from this box indicate the types 
of messages that can be  received by  and  sent from this module. In more detail: 
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All  the  possible  input  message  types of the  module  are  shown as incoming  arrows 
on the  left. 

Smart Executive 
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Figure 1 - Diagram of a Software Module Interface 
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All  the  possible  output  message  types  of  the  module  are  shown  as  outgoing  arrows 
on  the  right. 

The  name  of  the  message  type  is  shown  in  capital  letters  above  each  arrow,  along 
with  the  message  parameters (if  any)  inside  angled  brackets “<. . .>”. 

For  each incoming arrow,  the  names  of  the  modules  from  which  messages of  that 
type  may originate are  shown  below  the  arrow. 

For  each outgoing arrow,  the  names of the  modules  to  which  messages of that  type 
are sent are  shown  below  the  arrow. 

Cause-effect  relationships  between  message  types  are  shown  as  dotted  lines  going 
across  the  inside of  the box: 

A dotted line going  from  an  incoming  message  type to an  outgoing  message  type 
indicates  that  receipt  of  such  an  incoming  message may lead  to  the  software 
module  producing such an  outgoing  message.  We  will  refer to such  dotted  lines 
as  denoting “explicit” cause-effect  links. 

A dotted line going  from  an  outgoing  message  type to an  incoming  message  type 
indicates  that  sending of such  an  outgoing  message  may (via the  actions of other 
software  modules)  lead to the  receipt of such  an  incoming  message.  We  will 
refer to such  dotted lines as  denoting “implicit” cause-effect  links. 

3.2  Analysis  Objectives 

The objectives set.for analysis were to look for instances of  the following potential 
problems within  the set of software interface diagrams: 

“Dangling”  outgoing  message  type - a message  type  on  an  outgoing  arrow of 
module  M1  listed  as  going to some  module  M2,  but not listed  on  module  M2’s 
diagram  as  an  incoming  message  type  from  module M 1. 

“Dangling”  incoming  message  type - a message  type on an incoming  arrow of 
module MI listed  as  coming  from  some  module  M2,  but not listed  on  module M2’s 
diagram as an  outgoing  message  type  to  module M 1. 

“Mismatched”  parameters - a message  type  whose  list of parameters  in  one  module 
is  not  identical to its list of parameters  in  some  other  module. 

“Miraculous”  implicit  cause-effect  link - an implicit  cause-effect  link (i.e., a link 
from an outgoing  message  type (Tl, say), to an  incoming  message  type (T2, say), 
such  that  there  does not exist a chain of explicit  cause-effect links and 
correspondences  between  outgoing  and  incoming  messages  that  connects  T1 to T2. 
See Figure 2 for  an  example  of  an  implicit  cause  effect  link  for  which  the 
corresponding  chain exists; had  any  one  of  the  elements  of  that  chain  been  absent 
(e.g., the  explicit  cause-effect  link  in  M2),  then  the  chain  would  have  been  broken, 
and  M1 ’s implicit  link  would  have  been  deemed  “miraculous.” 
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"Omitted"  implicit  cause-effect  link - omission of  an implicit  cause-effect  link  (from 
outgoing  message  type T1 to incoming  message  type T2) for  which  there does exist 
a chain  of  explicit  cause-effect  links  that  connect T1 to T2. 

Key: Module 

Incoming Outgoing " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Correspondence 
Implicit cause-effect . Explicit cause-effect 

MI'S  implicit cause-efSect link (leftwards from outgoing TI to incoming T2) 
corresponds to the chain via M2  (M1 's  outgoing T1 corresponds to M2's 
incoming TI ,  which is linked by  an explicit cause-efSect link to M2's outgoing T2, 
which corresponds to MI ' s  incoming T2). 

4"""""""""" 

""""""""""~ 

Figure 2 - an implicit cause-effect link and a 
corresponding chain of explicit cause-effect links 

3.3 Analysis Process 

Selection of  the analysis tool  was driven by the following considerations: 

pressing  need for rapidity of  analysis  results, 

potential  need to scale to voluminous  quantity of data,  and 

relatively  straightforward  nature of  analysis  calculations. 

Together, these motivated  the selection of a database with a powerful  and flexible query 
mechanism to serve  as the analysis tool. A powerful  and flexible database query 
mechanism would enable rapid analysis. The database itself  would easily handle 
voluminous amounts of data, while automatic query optimization would ensure efficient 
analysis. Finally, since the analysis calculations were expected to be  relatively 
straightforward, it  was anticipated that  the simple reasoning capabilities of a database 
would suffice. Had the analysis required, say, reasoning about symbolic expressions with 
arithmetic inequalities, then it is likely that a more sophisticated tool such as a theorem 
prover would  have  been needed. 
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Our choice was to use AP5 [Cohen 19891, a research-quality advanced database tool 
developed at  the University of Southern California. AP5 provides an entity-relationship- 
like data-model convenient for representation, facilitating the design of the data schema 
to hold  the information. AP5 exists as  an extension of  Common Lisp, itself a powerful 
and convenient programming language environment, suited to  the ad-hoc programming 
needed for the process of  data-entry.  AP5 provides a powerful definition capability and 
query interface, facilitating the expression of  analyses  as database queries, and  has a 
sophisticated underlying  query optimization mechanism. 

Having selected the AP5 database system  as  the  analysis tool, the  analyses  were achieved 
by: (1) preparing a database representation to hold  the information content of the software 
interface diagrams, (2 )  loading the information into the database, (3) issuing the 
appropriate database queries corresponding to each of  the  problem category analyses, and 
(4) interpreting the results. 

These steps are  now discussed in detail. 

3.3.1 Representation 

The first analysis step was  the design of a database representation to hold  the information 
content of the software interface diagrams. The AP5 database provides entities (typed 
objects) and relationships among entities as building blocks, so a straightforward 
representation was  developed in terms of these, as follows: 

Each message arrow  was represented as  an entity of type  arrow,  with attributes (binary 
relations) to hold  the  arrow’s message name, the arrow’s destinations or sources, and its 
parameters. Subtypes of this arrow  type distinguished incoming and outgoing arrows. 
Cause-effect links were  represented similarly. 

Definitions of information derived from the above  were  then added. For example, the 
concept of correspondence between  an outgoing arrow  and  an incoming arrow  was 
defined to hold  whenever  two such arrows share the same message name, the outgoing 
arrow points to (i.e., has  as one of its destinations) the incoming arrow’s module, and the 
incoming arrow points from (i.e., has  as one of its sources) the outgoing arrow’s module. 
The AP5 definition of this “correspondence” concept is shown figure 3. 

(defrelation  correspondence ; define the  concept correspondence; it relates 
((oa ia) s t .  ; a pair of  objects, oa and ia, such that: 
(and  (out-arrow oa) ; oa is  an  outgoing message arrow, 

(in-arrow  ia) ; ia is an incoming message arrow, 
(E (name)  (and (arrow-name  oa  name)  (arrow-name  ia name))) 

(E (mod) (and  (arrow-module ia mod) (arrow-to  oa mod))) 

(E (mod)  (and  (arrow-module  oa mod) (arrow-from  ia mod))) 

; oa’s name and ia’s name  are  the same, 

; oa points to ia’s module,  and 

; ia points  from oa’s module. 
1)) 

Fimre 3 - examde AP5 definition 
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The innermost clauses are relational queries, e.g., (arrow-name  oa  name) is true if and  only 
if  the arrow-name relation relates oa to name. Traditional logical connectives (e.g., and), 
and quantification (e.g., (E (v) q) - meaning  the existential predicate  whose bound variable 
is v and whose inner predicate is q) can  be employed. 

The  syntax combines a lisp heritage  and a relational flavor, which to those unfamiliar 
with either is somewhat obscure at first reading. The important point is to observe that  the 
overall form of the definition mirrors closely the English description above, that is, there 
is a straightforward rendering of the obvious definition into the corresponding formal 
expression. 

3.3.2 Data  entry 

The diagrams were available electronically as PostScript files. Some manipulation was 
required to extract the information contents of those files and  massage it into a form that 
could  then  be input into the  AP5 database. This was done semi-automatically, mostly by 
means of Emacs macros to extract the textual contents (message names, parameters, and 
inputloutput module names). The information imparted by  the cause-effect arrows had to 
be  manually entered into the database (since it was  not  readily apparent how to recognize 
from the PostScript file which  message  types  were  being connected by a cause-effect 
arrow). Overall, this process took on  the order of a couple of hours to process the 
equivalent of 6 times the information content of Figure 1. 

3.3.3 Analysis 

The analysis objectives of  section 3.2 were expressed as database queries to evaluate 
against  the data entered in the previous step. The definitions follow: 

“Dangling”  outgoing  message  types: 
(listof (oa) s t .  (and  (out-arrow oa) (not (E (ia)  (correspondence  oa ia))))) 
retrieves  the  list of objects  that  are  outgoing  arrows  and  are  not  related by 
correspondence to anything. 

“Dangling”  incoming  message  types  (analogous to the  previous  bullet): 
(listof (ia) s.t. (and  (in-arrow  ia) (not (E (oa) (correspondence  oa ia))))) 
“Mismatched”  parameters: 
(listof (oa ia) s t .  (and  (correspondence  oa  ia) 

retrieves  the  list of pairs  of  objects  that  are  related  by correspondence (i.e.,  an 
outgoing  message  and its incoming counterpart), but  whose  parameter lists are not 
equal. 

“Miraculous”  implicit  cause-effect links: 
(listof (oa ia) s.t. (and  (implicit-cause-effect  oa  ia) 

retrieves  the  list of  pairs  of objects  that  are  related by implicit-cause-effect but not 
related  by cause-effect-chain. The  definitions of those  relations  are as follows: 

(defrelation  implicit-cause-effect 
((oa ia) s.t. (and  (out-arrow oa) (in-arrow  ia)  (cause-effect  oa ia)))) 

(not (E (plist) (and  (parameters  oa plist) (parameters ia plist)))))) 

(not (cause-eff  ect-chain  oa ia)))) 
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i.e., a cause-effect  arrow  from an outgoing  message  arrow to an  incoming one. 
explicit-cause-effect is defined  analogously. 

(defrelation  cause-eff  ect-chain  (tclosure correspondence-or-explicit-cause-eff ect)) 
i.e., the transitive closure of correspondence-or-explicit-cause-eff ect, which  is  in  turn 
defined  by: 
(defrelation  correspondence-or-explicit-cause-effect 
((a1  a2) s.t. (or  (correspondence  a1 a2) (explicit-cause-effect a1 a2)))) 

(listof (oa ia) s.t. (and  (not  (implicit-cause-effect  oa  ia)) 
(cause-effect-chain  oa  ia))) 

retrieves  the  list of  pairs  of objects  that  are not related by implicit-cause-effect but are 
related  by cause-eff  ect-chain. 

“Omitted”  implicit  cause-effect link: 

Again, observe that the formal expression of these queries is a straightforward rendering 
of the informally expressed concepts. 

3.4 Analysis Results 

The performed analyses resulted in a list  of anomalies for each of the  analysis objectives. 
Anomalies  were  readily categorizable into either: 

inconsistency - attributable  to  contradictory  information  present  within  the  set of 
software  interface  diagrams,  or 

incompleteness - attributable to information  missing  from  set of software  interface 
diagrams. 

It  was immediately clear that a good number of the incompleteness anomalies could be 
attributed to the fact that diagrams had  not  been  drawn  of all of the  system’s software 
modules. In response to this, a simple refinement of the database queries was made to 
draw  the distinction between the following two sub-cases of incompleteness: 

internal  incompleteness - attributable to missing  information  that  should  have  been 
present  within  the  existing  set of software  interface  diagrams,  and 

external  incompleteness - attributable to the  lack of a software  interface  diagram; 
these  anomalies  point to expectations  on  the  information  that  those  diagrams, if 
provided,  would  contain. 

Finally, one further sub-case of  reported anomalies was distinguished - “missing” implicit 
cause-effect links that could be  deduced from other links all present  in  the same diagram. 
For example, for the module shown  in  Figure 1 ,  analysis reported that  an implicit cause- 
effect link from the outgoing NAV-PLAN-PREP arrow to the incoming PS-PLAN-RESULT 
arrow  was missing. Upon inspection, it  was obvious that the diagrams were  not bothering 
to show such links when  they could be deduced from the  presence of the other cause- 
effect links shown within that same diagram (NAV-PLAN-PREP to 
NAV-PLAN-PREP-FINISHED to PS-PLAN-NEXT-HORIZON to PS-PLAN-RESULT). Again, 
a simple refinement of the database query  was sufficient to automatically distinguish such 
cases. 
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What  remained  was a list of approximately 20 genuine anomalies, distributed over the 
various categories of anomalies identified above. Note that these anomalies were  derived 
from the information in  the software module interface diagrams, which were  used  as a 
form of documentation aid for understanding. Hence it should not  be  construed  that these 
anomalies carried through into the  actual design. 

3.5 Analysis  Discussion 

Database as a  formal  analysis  tool: The effort succeeded in straightforwardly 
representing simple design information in a database, and conducting consistency and 
completeness checks by issuing queries against  that database. 

Flexibility  and  customizability: Flexibility to construct new checks, and to refine 
previous checks, was crucial. This study  employed both generic checks (e.g., 
correspondences between outgoing and incoming messages) and customized checks (e.g., 
concerning cause-effect links). Thus there  was  no a-priori limitation on  the  set of checks 
that could be conducted. Furthermore, refinement of checks was also found to be useful. 
In this study, the originally designed consistency checks were refined to take into account 
whether information was expected to be  absent (e.g., reference to information in a 
diagram not provided; implicit cause-effect links justified by other links present  within 
the same diagram). Such iteration is common whenever someone other than  the  authors 
of  the  design information conducts the  analysis. Assumptions on the use of a notation 
may  not  have  been documented, or the analyst  may not have come across such 
documentation. Analysis  that does not take these assumptions into account  generates false 
alarms  (typically, a large number of them!) on  the first attempt at  analysis. The analyst 
must recognize the likely underlying cause, confirm it with the developers, and  refine  the 
analysis accordingly. Flexibility is the  key to being able to do this. 

Working  with  available  information: Adapting the analysis activities to the existing 
available information sources was  relatively straightforward. While not  completely 
automated, actual data capture was a relatively short process. It  was  preparing for data 
capture (i.e., determining the appropriate database schema representation) and conducting 
the  analyses (i.e., expressing them as database queries) that took the bulk of the  time  and 
effort. 

It  is likely that the use  of  an existing CASE tool  would provide for most of the checks 
that  we performed, notably  as checks of data flow diagrams. However, one of the goals of 
this study  was to work  with whatever form of information was currently available. The 
developers had not employed a CASE tool to design this portion of the software. Our 
approach  makes  it possible to perform the equivalent analyses  at little cost, and provides 
for additional (and useful) flexibility to build customized analysis checks. In particular, if 
we  were to try to perform our checks with a CASE tool, we  would have had to convert 
the available information in order to input it into the tool. Additionally, we  would likely 
not  have  had sufficient flexibility to define additional checks (notably of  the implicit 
cause-effect links) not already provided for by that CASE tool, or to modify checks to 
account for missing “obvious” information. The freedom of  users to invent  and  employ 
their  own notational variants is obviously desirable. Our study suggests it  may  be possible 
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to allow this freedom, and  be able to rapidly construct analysis mechanisms that  work 
directly with  the  users’  new notations. 

It could be  argued  that  the  redundancy  present  in  the  design information was unfortunate, 
and  that a better solution would  have  been to use a specification style that eschewed such 
redundancy. In particular, the implicit causality links could have been deduced 
automatically from the other cause-and-effect information, and so should never  need to 
have been drawn  by  hand. Again, we  appeal to the  goal to work  with available 
information, and stress that  we  analyzed  what  we  were actually provided with. 
Additionally, it  is plausible that  the implicit causality links represented requirements, and 
that the rest of the specification was intended to fulfil them. If this was indeed the case, 
then  the analysis was useful as a means to check consistency of the requirements against 
the system description. 

4. Pilot  Study I1 - Analyzing  Test  Logs 

In the second pilot study, we sought to repeat  the  use  of  the database tool as a mechanism 
for lightweight, rapid analysis, but applied to  a different aspect of  the development 
process. Our second area of focus was  on the testing activities of the process. 

As part  of testing, the software modules are executed in a simulation test-bed (simulating 
both the hardware, and the hardware’s environment, e.g., the spacecraft’s camera’s view 
of stars). Each test  run results yields transcripts of the software’s behavior. In particular, 
the message passing between the software modules is recorded  in log files. The test  team 
studies these logs to check that  the software is correctly commanding the spacecraft. 
However, these logs are highly detailed, and often quite lengthy (several thousand 
messages were  typical for a test run  even during the first iteration of the project’s 
development cycle). Hence it was  thought appropriate to perform a pilot study  in  which 
rapid lightweight analysis  would be applied to a small subset of these test logs. 

Again,  the  four requirements for rapid analysis were considered, and led to  the following 
decisions: 

(1) To rapidly acquire the information to be analyzed: The available test logs  provided 
the  raw data for analysis, already in a highly structured and therefore readily  machine 
manipulable form. 

(2) To rapidly decide what to analyze this information for: There are two sources of 
properties that should be true of spacecraft control, and therefore are immediate 
candidates for log file analysis: requirements on  the correct behavior of the spacecraft 
itself (e.g., that the camera shall never  be pointed too close to the sun), and expected 
protocols of message  flow  between  the software modules. The latter are important 
because deviations from expectations might  point to abnormalities in  the control 
software itself. 

(3) To rapidly perjiorm the analysis  itself: Again, a database was to serve as the analysis 
engine. The expectation was that it  would  be straightforward to populate the database 
with the messages  in a log file, and express the requirements to be checked as queries. 



Feather  Rapid  Application of Lightweight  Formal Methods. . . 13 

The query mechanism of the database itself  would  perform  the  analyses  rapidly  and 
automatically. 

(4) To rapidly interpret the results of the method: Any discrepancies that this analysis 
revealed would  be  readily traceable to the problematic message(s) in  the log files. 
Hence, this step was expected to need little further effort. 

4.1 Available  Information 

A test  run  of  the spacecraft software yields (among other things) a log file recording all of 
the message passing between the software modules. Figure 4 shows a fragment from such 
a recording. Each log file line corresponds to a message  being  sent between modules of 
the software implementation. For readability here, log file lines longer than the width of 
this text have been split into multiple lines with  their continuations indented. 

Each log file line begins  with the message name, followed by  the arguments to that 
message. Typically, these arguments take the form of a { } delimited list of { } delimited 
attribute-value pairs.  For example, the first line comprises the message name 
FSC-POWER-ON-OFF-REQUEST, and a list of  two attribute-value pairs, the first of 
attribute switch-name and  value ACS-EGA-A-SW1 , and the second of attribute switch-state 
and value FSC-SWITCH-ON. For a few message types, a single argument value simply 
appears after the  message  name without { } delimiters. For example, the 
ACS-MDC-STATE-COMMAND message towards the end of  the fragment has argument 
ACS-RCSDV-MODE. 

FSC-POWER-ON-OFF-REQUEST {{switch-name ACS-EGA-A-SWl} {switch-state 

MI-MODE-UPDATES {{updates "(MODE-UPDATES (POWER-STATE EGA-A ON) 

FSC-IPS-SET-THRUST-LEVEL {{level lo}} 
MI-MODE-UPDATES {{updates "(MODE-UPDATES (OP-STATE IPS-A (STEADY-STATE 

MI-MODE-UPDATES {{updates "(MODE-UPDATES NIL ((OP-STATE IPS-A (STEADY- 

ACS-MDC-STATE-COMMAND  ACS-RCSDV-MODE 
MI-MODE-UPDATES {{updates "(MODE-UPDATES (CONTROL-MODE ACS 

FSC-SWITCH-ON}} 

((POWER-STATE EGA-A ON)))"}} 

10)) ((OP-STATE IPS-A STARTUP)))"}} 

STATE lo))))"}} 

ACS-TVC-MODE) ((CONTROL-MODE ACS ACS-TVC-MODE)))"}} 
I 

Figure 4 - Fragment of a Log File 

4.2 Analysis  Objectives 

The log files capture message passing between  the software modules during test runs. 
Two kinds of properties can  be analyzed for in  these log files: 
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Whether  the  controlled  spacecraft  adheres  to  all  its  explicit  requirements.  For 
example,  that the boresight of the camera shall never point to within 1 degree of the 
sun when the  camera cover is open. These  requirements  are  called  “flight rules”, of 
which  there  are  expected  to  be  on  the  order of 100  as  successive  design  iterations 
introduce  the DS-1 spacecraft’s complete functionality. 

Whether  the  control  software  itself  is  operating  normally.  Specifically,  whether  the 
message  flow  between  the  software  modules  follows  the  expected  protocols.  For 
example,  that a command  message is followed  some  time  later by  the  corresponding 
confirmation  message,  before  the  next such command  message  is  sent.  Deviations 
from  these  expected  protocols  might  indicate  abnormalities  in  the  control  software 
itself. 

4.3  Analysis  Process 

The same database as  had  been  used for the first phase of this pilot study was used again 
as  the analysis tool. Analyses  were achieved by: 
(1) preparing a database representation to hold the information content of  the message log 
files, 
(2) loading the message log file information into the database, 
(3) issuing the appropriate database queries corresponding to the properties to be checked 
of the log file, and 
(4) interpreting the results. 

4.3.1  Representation 

The first analysis step was the design of a database representation to hold the information 
content of the log files. We  made the initial decision to load all the messages into the 
database, and  then conduct the  analyses as queries against this database. 

Messages were represented as objects in  the database, with  their names and attribute- 
value pairs represented as attributes of those message objects. Asserting the binary 
relation msg-then-msg between  the objects representing successive messages captured the 
sequencing of messages in  the log file. The transitive closure of this relation  was defined 
as then, allowing the querying  of whether two messages appear  in a given order in  the log 
file (but are not necessarily immediate successors). 

4.3.2  Data  entry 

The well-structured form of the  log files made the task of parsing them into the database a 
straightforward programming task. 

Some of the log files were quite large - 3000 or more  messages  were common, in even in 
the early stages of development. This rendered our nahe approach, loading all of a log 
file’s messages into the database, rather slow. Since each query  typically involved only a 
small subset of the message  types, it proved to be much more efficient to load into the 
database only messages that  were instances of those message  types. This was easily 
automated, by looking for the  message names mentioned in  the query, and  then loading 
those and only those named  messages. This simple refinement considerably speeded the 
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loading and  analysis activities. Discarding information that is obviously irrelevant to the 
analysis objective is a commonly applied step to improve the tractability of analysis. 

4.3.3 Analysis 

Analysis  was to check adherence to flight rules (explicit requirements expressed in  terms 
of the spacecraft’s condition) and conformance to normal operation of  the control 
software itself (protocols of message flow  among  the software modules). 

Analysis  was  achieved  by expressing a flight rule or message protocol as a database query 
(or queries) which  would retrieve all instances of messages in violation of that condition. 
For example, one of the flight rules says: “When the IPS is not thrusting, be in RCS 
control mode”. This could be violated either by  turning  off thrusting while  not  in  RCS 
control mode, or turning off RCS control mode while  not thrusting. The following two 
database queries check for these violations: 

Find  an IPS-thrust-off message  that  occurs  while RCS control  mode is off  (i.e., 
occurs after some  earlier RCS-control-mode-off message,  but before any  subsequent 
RCS-control-mode-on message),  and 

Find an RCS-control-mode-off message  that  occurs  while IPS is  not  thrusting  (i.e., 
occurs after some  earlier IPS-thrust-off message,  but before any  subsequent 
IPS-thrust-on message). 

It  is straightforward to express queries such as these in  the  AP5 database query  language. 
For example, the  query corresponding to the first kind of violation is shown  in  Figure 5. 

Ideally, the  user should be able to express the single flight rule, and have this pair of 
queries be automatically generated. While we anticipate this would be simple to 
implement, we did not do so as  part of the  pilot  study. 

(listof (ml  m2) s.t. 
(and (RCS-control-mode-off m l )  ; m l  is an RCS-control-mode-off message 

(IPS-thrust-off m2) ; m2 is an IPS-thrust-off message 
(then m l  m2) ; m2  occurs affer m l  
(not  (exists (m3) ; there’s no m3 that’s an: 

(and (RCS-control-mode-on m3) ; RCS-control-mode-on message, 
(then m l  m3) ; occurs after m l  , and 
(then m3 m2))))))) ; occurs before m2 

I Query  to find  a message  that  turns oflIPS thrusting while RCS  is ofl(i.e., after an RCS I oflmessage, but before any subsequent RCS on message). 
Figure 5: database query for flight rule violations 

Analysis for conformance to message passing protocols is similar in nature. For example, 
we  may expect conformance to the protocol that a command message is followed some 
time later by  the corresponding confirmation message, before the next such command 
message is sent. The database query to check for violations of this rule need simply look 
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for two occurrences of  the command message  without  any intervening confirmation 
message. 

Since there were multiple log files (corresponding to distinct test runs), we found it 
convenient to automate conducting the same analysis across a whole set of log files. The 
results for each log file were gathered, together  with a summary pointing to which  (if  any) 
of  the log files yielded non-empty lists of answers to the queries. Again, a simple step to 
take, but one that further enhanced the automation  of  the overall process. We found that 
the time to perform a typical query across a set of 60 or so log files, of  which  at least 20 
were  of substantial length, was  on the order of  two minutes, executing on a  PentiumB 
166. 

4.4 Analysis  Results 

Analyses  were conducted for adherence to a small number of the expected message 
patterns and flight rules, on log files produced  in two successive rounds of the project’s 
iterative development process. 

One surprise was revealed by these analyses - while checking a log file for adherence to a 
flight rule, several violations were detected. This led to (manual) inspection of the log 
file. Guided by the violation (i.e., knowing what to look for), it  was  now  easy to spot 
repeated instances where commanding the  spacecraft to change to an RCS mode  was 
followed by a confirmation reporting the  spacecraft  had changed to  a mode other than 
RCS! The explanation turned out to be attributable to an  anomaly  in  the  creation  of  the 
message log files - the actual logging uses concise numerical codes in place the  human 
readable message names. Post-processing of the log files is performed later to replace  the 
codes with the corresponding names. In between  the  time of the simulation run (during 
which the logging of messages actually took  place)  and  the post-processing of those log 
files, the correspondence between  message  names  and codes was changed. Thus it  turned 
out to be a false alarm - the spacecraft software had, in fact, been working correctly. 

In fact, no  genuine anomalies were discovered by this pilot study, most likely  because for 
the patterns and flight rules studied, the  design  was functioning correctly. Nevertheless, 
the goals of the  pilot study were  met - namely, to demonstrate the feasibility of rapid 
analysis of voluminous amounts of information. This has led to more  recent  work 
(ongoing) in  which project money (as contrasted to the research funding that supported 
the pilot study) is paying for the application of this same overall approach. 

4.5 Analysis  Discussion 

Database as a  formal  analysis  tool: Again, a database proved sufficient for representing 
the information content to be analyzed, and its query mechanism capable of expressing 
the analyses. The test logs emerge from test  runs of the complex software system,  which 
involves a planner,  and concurrently operating diagnostic engine and real-time executive. 
Thorough analysis of these test logs is helpful towards developing assurance that  the 
system as a whole  is operating correctly. 

Scaling  to  larger  analyses: These experiments were conducted in the early iterations of 
the spacecraft software development. The simple optimization of loading the database 
with  only those messages relevant to the  query, discarding the rest, was  sufficient to 
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achieve desirable levels of efficiency for these early iterations. In successive design 
iteration, further detail of the spacecraft is introduced, leading to more  message  types, 
more flight rules, and  longer message logs. This might necessitate further optimization of 
the checking process. The obvious next step to optimize the analysis technique would  be 
to process each message log file incrementally, maintaining just enough of the state of the 
spacecraft so as to be able to check the flight rule(s) of interest at  the time. For example, 
to check the flight rule “When the IPS is not thrusting, be in RCS control mode”, read  the 
messages of a log file in  one  by one, maintaining the IPS state (thrusting or not thrusting) 
and  the control mode (RCS or not RCS) incrementally, and  watch for a database 
transition that leads to a state in  violation of this rule. This is an example of the 
conversion of a temporal formula into a finite state automaton to recognize violations of 
that formula. Such an  approach is described in [Dillon & Yu  19941.  If  we were to 
incorporate this optimization into our approach, we  would encode the automaton as 
database integrity conditions that watch each database transition, advancing the state of 
the automaton as appropriate and generating an error report  if  and  when  the automaton 
ever reached a state corresponding to  a violation. 

Convenience: The experience of expressing several flight rules and message passing 
protocols revealed commonly recurring idioms. An example of such an idiom is: the 
occurrence of an instance of message A followed some time later by an instance of 
message B without an intervening instance of message C. Rather than  have to write 
(exists (mA mB) (and  (A-type-message mA) 

(B-type-message mB) 
(then mA mB) 
(not (exists (mC) (and  (C-type-message mC) 

(then mA mC) 
(then mC mB)))))) 

it was much more convenient to define a macro A-noC-B that  would expand to the above, 
and thereafter write simply 
(A-noC-B A-type-message  B-type-message  C-type-message). 
Indeed, what  was  needed  was a combination of a vocabulary tailored for intervals [Allen 
19831 (e.g., interval A should contain interval B), timing constraints [Lutz & Wong 19921 
(e.g., X must occur within 10 seconds after a  Y has occurred), etc. 

5. Conclusions 

The two pilot studies showed two successful applications of lightweight formal methods 
in a fast-paced development setting, yielding results of a modest nature in a timely 
fashion. These studies employed lightweight formal methods  as a complement to, not 
replacement for, other forms of quality assurance. Their relationship to other formal 
method approaches and to testing is discussed next. 

Thorough testing of the software code itself remains essential, since it alone has the 
capacity to exercise the  actual code rather than  an abstraction of  that code. Testing would, 
of course, reveal the interface mismatches that  the first pilot  study addresses, however 
would do so only after the designs had  been developed into code. The first pilot study 
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showed how  this class of problems could be  detected  at  design time. The inclusion of a 
form of simple causality information in  the  design documents made possible further 
checking, beyond simply issues of interface compatibility. The second pilot  study  showed 
how the information that results from testing could be automatically analyzed for a range 
of conditions. This is obviously reliant upon testing having taken place (without testing, 
there would  be no test logs to analyze!). It augments testing by performing a series of 
mundane checks carried out thoroughly against all the available test logs. It could also be 
useful as a means to query the set of  test cases, and  thus help the test team to navigate 
through the  set of tests, and to estimate the coverage provided  by those tests. 

More traditional “heavyweight” forms of formal methods, for example, symbolic 
evaluation of a formal specification, state exploration, and theorem proving, are 
irreplaceable as means to expose the presence  of particularly subtle errors (better yet, to 
provide assurance as to the absence of those errors). However, these methods typically do 
not scale to the size and complexity of the  full problem. Therefore they are usually 
applied to a carefully chosen subset of the overall problem, or to  a carefully constructed 
abstraction of the problem. In contrast, the lightweight approach followed here is applied 
to the information content of existing project documentation, and little or no human- 
conducted selection from, or abstraction of, this information has  been needed. We 
therefore ascribe the benefits of the approach to the mechanized technique, rather  than to 
the skill and  insight  of the human analyst. This gives  us confidence that the technique is 
ready for widespread application. 

Many approaches to analysis  would  be capable of performing the simple analyses  that  we 
have conducted. However, our emphasis has  been  upon  the  goal  of rapid analysis. This 
precludes many  of the heavyweight formal methods, since their application requires 
considerable time  and effort to prepare  the input for  the  analysis  tool (e.g., to construct a 
formal specification), and, often, to perform the actual analysis (e.g., attempt to prove  the 
theorem, and interpret the failure to do so as  an  anomaly  in  the specification). An 
interesting observation (due to one of this paper’s reviewers) is that heavyweight  formal 
methods typically require manual effort that is proportional to the entire input to the 
analysis process, including both the properties to be  shown and the specification upon 
which that  analysis is to be conducted. For example, theorem proving usually  requires 
manual effort to construct the specification, to express the properties to be proven, and 
then to actually prove them. Model checking and  other forms of state exploration require 
construction of a state machine model to be checked; often, to obtain a state model  that  is 
tractable to analyze, some significant amount of manually performed abstraction is 
required. The lightweight approach as applied in  the second pilot study required manual 
effort that  was proportional only to the expression of  the properties -- the test  logs to be 
checked for adherence to these properties were loaded automatically into the database. 
This made it suited to the checking of voluminous amounts of information. The first pilot 
study did require some manual effort proportional to the size of the specifications - it  was 
necessary to manually translate the information content of diagrams’ arrows into database 
information. However, this was so straightforward a task that it could be  done fairly 
quickly and  without  great insight. 
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Overall, we attribute the achievement of rapid analysis to our  choice of a database as  the 
analysis engine. This enabled us to, quickly and easily incorporate available information 
as data in  the database, and cast analysis problems as database queries. The underlying 
database technology then  provided the efficient evaluation of those queries. 

Nevertheless, there are emerging results of application of “heavyweight” formal methods 
in a rapid enough fashion to contribute to ongoing development activities. For example, 
[Easterbrook et  al  19971 presents three case studies of  formal methods applied to the 
requirements phase of system developments. In these cases there is typically  an  up-front 
manual activity of re-expressing the requirements into a form suitable for application of 
the analysis tools. This manual  activity yields benefits even  before the analysis takes 
place (e.g., revelations of  minor ambiguities and incompletenesses), so itself qualifies as a 
form of “lightweight” analysis method, with the added benefit of being a key step towards 
the eventual application of the “heavyweight” method. Further research is  needed find a 
smooth progression from “lightweight” to “heavyweight” formal methods, and so realize 
the benefits of both approaches. Work along these lines includes the ongoing extension of 
SCR-style consistency checking (e.g., Heitmeyer Jeffords & Labaw  19961) to incorporate 
model checking as a more sophisticated form of analysis, and,  in  the  reverse direction, the 
incorporation of tabular forms of expression into the  PVS theorem prover [Owry  Rushby 
& Shankar 19971. 

The most expedient applications of formal methods occur when  the form of input needed 
by the formal analysis tool coincides with the form of expression used by  the project to 
state their requirements, designs, etc. CASE tools would  seem to offer an expedient 
vehicle through which to both capture the input needed for formal analysis, and provide 
(automatic) formal analysis  as just another option to the  user. The relatively simple kinds 
of  analyses reported herein  might be well suited to CASE tool usage. More sophisticated 
analyses, however, might necessitate some tailoring of the  input language. For example, 
[Leveson et a1 19941 devised a formal language that  was suitable for human writing and 
reviewing of requirements and for mechanical analysis. Such circumstances are all too 
rare, and  it is likely that  for a long time to come there will  remain a need to adapt formal 
method techniques to whatever forms of documentation are employed by projects. 
Lightweight formal methods seem particularly suited to this activity. 

Another possible application of lightweight formal methods  is  as part of  the infrastructure 
that  would support “viewpoints” (also called “multiple perspective”) during software 
development [Finkelstein et  al  19921 [Vidal et a1 19961. In this envisaged approach, a 
development environment should actively support multiple participants in  the course of 
their requirements, design, etc., activities. Consistency checking between the multiple 
participants’ artifacts (e.g., requirements, specifications, and designs) would be a core 
service of  any such environment. 
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